HEAD BRAIN

Mozok je součástí centrálního nervového systému, který se skládá z orgánů umístěných uvnitř lebky a obklopených ochrannými membránami, meningy, mezi kterými je tekutina určená k pohlcení zranění; cerebrospinální tekutina také cirkuluje skrze komory mozku. Lidský mozek váží asi 1300 g. Podle jeho velikosti a složitosti tato struktura ve světě zvířat není stejná.

Mozak je nejdůležitějším orgánem nervového systému: v mozkové kůře, která tvoří vnější povrch mozku, v tenké vrstvě šedé hmoty, skládající se ze stovek milionů neuronů, pocity se uvědomují, vytváří se dobrovolná aktivita a vyvíjejí se vyšší duševní procesy, jako je myšlení, řeči

Mozok má velmi složitou strukturu, obsahuje miliony neuronů, jejichž buněčná těla jsou seskupena do několika úseků a tvoří tzv. Šedou látku, zatímco jiné obsahují pouze nervové vlákna pokryté myelínovými plášti a tvoří bílou hmotu. Mozak se skládá ze symetrických polovin, mozkových hemisfér, oddělených dlouhou drážkou o tloušťce 3-4 mm, jejíž vnější povrch odpovídá vrstvě šedé hmoty; mozková kůra se skládá z různých vrstev neuronových těl.

Lidský mozek se skládá z:

  • mozková kůra, nejrozsáhlejší a nejdůležitější orgán, protože ovládá všechny vědomé a většinu nevědomých činností těla, navíc je místem, kde dochází k duševním procesům, jako je paměť, myšlení atd.;
  • mozkový kmen sestává z pons a medulla, v mozkovém kmeni jsou centra, která regulují životně důležité funkce, hlavně mozkový kmen sestává z jader nervových buněk, takže je šedý;
  • cerebellum se podílí na kontrole rovnováhy těla a koordinuje pohyby prováděné tělem.

MOZINOVÉ VRSTVY

VNĚJŠÍ BRAIN
Povrch mozku je velmi nodulární, protože kůra se skládá z několika záhybů, které tvoří mnoho křivek. Některé z těchto záhybů, nejhlubší, se nazývají drážky, které rozdělují každou hemisféru na čtyři části, nazvané lalůčky; jména laloků odpovídají jménům kraniálních kostí, které jsou nad nimi: čelní, temporální, parietální, okcipitální laloky. Každá podíl je naopak protínají méně hlubokými záhyby, které tvoří podlouhlé zakřivení nazývané gyri.

VNITŘNÍ VRSTVY ​​BRAZCE
Pod kůrou mozku je bílá hmota sestávající z axonů neuronů umístěných na kůře, která spojuje různé zóny do jedné hemisféry (sjednocující vlákna), seskupuje různé části mozku (projekční vlákna) a také propojuje obě hemisféry mezi sebou (nitě se stehem). Vlákna spojující obě hemisféry tvoří tlustý pás bílé hmoty nazývaný corpus callosum.

STRANA BRAZCE

V hlubší části mozku jsou také nervové orgány, které tvoří šedou hmotu základny; v této části mozku se nachází thalamus, kaudální jádro, lentikulární jádro sestávající ze skořápky a bledého jádra nebo hypotalamus, pod kterým se nachází hypofýza. Tato jádra jsou také oddělena vrstvami bílé hmoty, mezi nimi membrána, nazývaná vnější kapsle, která obsahuje nervové vlákna spojující mozkovou kůru s thalamusem, mozkovým kmenem a míchou.

BRAIN LIST

Mozková membrána jsou tři navzájem překrývající se membrány a obklopují mozku a míchu, které slouží převážně ochraně: dura mater, nejvzdálenější, nejsilnější a nejsilnější, je v přímém kontaktu s vnitřním povrchem lebky a vnitřními stěnami páteře, který uzavírá míchu; arachnoidní membrána, střední, je tenká elastická membrána, která se podobá struktuře; a měkkou membránu mozku - vnitřní membránu, velmi tenkou a jemnou, přiléhající k mozku a míchu.

Mezi různými mozkovými membránami, stejně jako mezi dura mater a kosti lebky jsou prostory s různými jmény a charakteristikami: poloviční prostor, který odděluje arachnoid a měkkou membránu mozku, je vyplněn cerebrospinální tekutinou; polotuhý prostor umístěný mezi dura mater a arachnoid; a epidurální prostor umístěný mezi dura mater a kosti lebky, naplněný cévami - žilními dutinami, které se nacházejí také v sektoru, kde je dura mater rozdělena, ohýbáním kolem dvou laloků. Uvnitř žilní dutiny jsou větve arachnoidní membrány, nazývané granule, které filtrují mozkomíšní moč.

BRAIN VENTRICLE

V mozku jsou různé dutiny vyplněné mozkomíšním moku a propojeny tenkými kanály a otvory, které umožňují cirkulaci mozkomíšního moku: boční komory jsou umístěny uvnitř mozkových hemisfér; třetí komora je umístěna téměř ve středu mozku; čtvrtý je umístěn mezi mozkovým kmenem a mozkovým můstkem, který je spojen s druhou komorou sylviovým sulkusem, stejně jako s polokřídlým pavučinovým prostorem, který sestupuje po středním kanálu míchy - ependymu.

Lidský mozek

Lidský mozek, orgán, který koordinuje a reguluje všechny životně důležité funkce těla a řídí chování. Všechny naše myšlenky, pocity, pocity, touhy a pohyby jsou spojeny s dílem mozku a pokud nefunguje, člověk jde do vegetativního stavu: ztrácí se schopnost jakýchkoli činností, pocitů nebo reakcí na vnější vlivy. Tento článek se zaměřuje na lidský mozek, složitější a vysoce organizovaný než mozek zvířat. Nicméně existují významné podobnosti ve struktuře lidského mozku a jiných savců, stejně jako většina druhů obratlovců.

Centrální nervový systém (CNS) se skládá z mozku a míchy. Je spojena s různými částmi těla periferními nervy - motorickými a senzorickými. Viz také NERVOUS SYSTEM.

Mozak je symetrická struktura, podobně jako většina ostatních částí těla. Při narození je jeho hmotnost asi 0,3 kg, zatímco u dospělého je cca. 1,5 kg. Při externím vyšetření mozku přitahují dvě velké hemisféry, které skrývají hlubší útvary. Povrch hemisféry je pokryt drážkami a konvolucemi, které zvyšují povrch kůry (vnější vrstva mozku). Za mozkem je umístěn, jehož povrch je tenčí. Pod velkými hemisféry se nachází mozková kosti, která prochází do míchy. Nervy opouštějí kmen a míchu, přičemž informace procházejí z vnitřních a vnějších receptorů do mozku a signály do svalů a žláz tečou v opačném směru. 12 párů kraniálních nervů se pohybuje od mozku.

Uvnitř mozku se rozlišuje šedá hmota, která se skládá hlavně z těl nervových buněk a tvořící kůru a bílou hmotu - nervová vlákna, která tvoří vodivé cesty (úseky) spojující různé části mozku a také tvoří nervy, které přesahují centrální nervový systém a jdou na různých orgánů.

Mozko a mícha jsou chráněny kosti - lebkou a páteří. Mezi podstatou mozku a kostnatými zdmi jsou tři skořápky: vnější - trvanová, vnitřní - měkká a mezi nimi tenká arachnoid. Prostor mezi membránami je naplněn cerebrospinální (cerebrospinální) tekutinou, která je podobná složení jako krevní plazma, vytvářená v intracerebrálních dutinách (komorách mozku) a cirkuluje v mozku a míchu, dodává jí živiny a další faktory nezbytné pro životně důležitou aktivitu.

Přívod krve do mozku je poskytován primárně karotickými tepnami; na základně mozku jsou rozděleny do velkých větví, které přicházejí do různých úseků. Přestože hmotnost mozku je pouze 2,5% tělesné hmotnosti, nepřetržitě, den a noc, dostávají 20% krve, která cirkuluje v těle, a tedy kyslík. Zásoby energie samotného mozku jsou extrémně malé, takže je extrémně závislé na dodávce kyslíku. Existují ochranné mechanismy, které mohou podpořit mozkový průtok krve v případě krvácení nebo zranění. Funkcí mozkové cirkulace je také přítomnost tzv. hematoencefalickou bariéru. Skládá se z několika membrán, které omezují propustnost cévních stěn a tok mnoha sloučenin z krve do substance mozku; tato bariéra tedy zajišťuje ochranné funkce. Například mnoho léčivých látek neprochází přes ni.

BRAINOVÉ CELKY

CNS buňky se nazývají neurony; jejich funkcí je zpracování informací. V lidském mozku z 5 až 20 miliard neuronů. Struktura mozku také zahrnuje gliální buňky, existuje asi desetkrát více než neurony. Glia vyplňuje prostor mezi neurony, vytváří nosnou kostru nervové tkáně a také provádí metabolické a další funkce.

Neuron, stejně jako všechny ostatní buňky, je obklopen polopropustnou (plazmovou) membránou. Od buněčného těla se odvíjejí dva typy procesů - dendriti a axony. Většina neuronů má mnoho větvících dendritů, ale pouze jeden axon. Dendriti jsou obvykle velmi krátká, zatímco délka axonu se pohybuje od několika centimetrů do několika metrů. Tělo neuronu obsahuje jádro a další organely, stejně jako v jiných buňkách těla (viz také CELL).

Nervové impulzy.

Přenos informací do mozku a nervového systému jako celku se provádí pomocí nervových impulzů. Rozkládají se směrem od buněčného těla k terminální části axonu, který se může rozvětvit a vytváří sadu konců v kontaktu s jinými neurony přes úzkou štěrbinu, synapse; přenos impulsů prostřednictvím synapse je zprostředkován chemickými látkami - neurotransmitery.

Nervový impuls obvykle pochází z dendritů - tenkých větvovacích procesů neuronu, které se specializují na získávání informací od jiných neuronů a jejich přenos do těla neuronu. U dendritů a v menším počtu existují tisíce synapsí na buněčném těle; je to přes axonové synapse, nesoucí informace z těla neuronu, přenáší je na dendryty jiných neuronů.

Konec axonu, který tvoří presynaptickou část synapse, obsahuje malé vezikuly s neurotransmitérem. Když impuls dosáhne presynaptické membrány, neurotransmiter z vezikuly se uvolní do synaptické štěrbiny. Konec axonu obsahuje pouze jeden typ neurotransmiteru, často v kombinaci s jedním nebo několika typy neuromodulátorů (viz níže Brain Neurochemistry).

Neurotransmiter uvolněný z axonové presynaptické membrány se váže na receptory na dendritech postsynaptického neuronu. V mozku se používá řada neurotransmiterů, z nichž každý je spojen s jeho konkrétním receptorem.

Receptory na dendritech jsou spojeny s kanály v semipermeabilní postsynaptické membráně, které řídí pohyb iontů membránou. V klidu má neuron elektrický potenciál 70 milivoltů (klidový potenciál), zatímco vnitřní strana membrány je záporně nabitá vzhledem k vnějšímu. Ačkoli existují různí mediátoři, všichni mají stimulační nebo inhibiční účinek na postsynaptický neuron. Stimulační účinek je realizován zvýšením průtoku určitých iontů, zejména sodíku a draslíku, membránou. V důsledku toho se negativní náboj vnitřního povrchu snižuje - dochází k depolarizaci. Brzdný účinek nastává především změnami toku draslíku a chloridů, v důsledku toho se negativní náboj vnitřního povrchu stává větší než v klidu a dochází k hyperpolarizaci.

Funkce neuronu je integrovat všechny vlivy vnímány prostřednictvím synapsí na jeho těle a dendrity. Vzhledem k tomu, že tyto vlivy mohou být excitační nebo inhibiční a nekryjí se včas, musí neuron vypočítat celkový účinek synaptické aktivity jako funkce času. Pokud převládá excitační efekt nad inhibiční a depolarizace membrány přesahuje prahovou hodnotu, aktivuje se určitá část membrány neuronu - v oblasti báze axonu (axon tubercle). Zde, v důsledku otevření kanálů pro ionty sodíku a draslíku, vzniká akční potenciál (nervový impuls).

Tento potenciál se dále rozšiřuje podél axonu na jeho konec rychlostí od 0,1 m / s do 100 m / s (čím silnější je axon, tím vyšší je rychlost vedení). Když akční potenciál dosáhne konce axonu, je aktivován jiný typ iontových kanálů, v závislosti na potenciálním rozdílu, kalciových kanálů. Podle nich vápník vstupuje do axonu, což vede k mobilizaci vezikulů s neurotransmiter, který se blíží k presynaptické membráně, s ním se spojí a uvolní neurotransmiter do synapse.

Myelinové a gliové buňky.

Mnoho axonů je pokryto myelinovým pláštěm, který je tvořen opakovaně zkroucenou membránou gliových buněk. Myelin se skládá převážně z lipidů, které vykazují charakteristickou podobu bílé hmoty mozku a míchy. Díky myelínovému pouzdru se zvyšuje rychlost provádění akčního potenciálu podél axonu, protože ionty se mohou pohybovat axonovou membránou pouze v místech, které nejsou pokryty myelinem - tzv. zastavení Ranvier. Mezi záchvaty se impulsy vedou podél myelinového pouzdra jako prostřednictvím elektrického kabelu. Vzhledem k tomu, že otevření kanálu a průchod iontů přes něj trvá nějaký čas, eliminace konstantního otevření kanálů a omezení jejich rozsahu na malé membránové oblasti, které nejsou pokryty myelinem, urychluje vedení impulsů podél axonu asi desetkrát.

Pouze část gliových buněk se podílí na tvorbě myelinového pláště nervů (Schwannových buněk) nebo nervových traktů (oligodendrocyty). Mnohé početné gliové buňky (astrocyty, mikrogliocyty) plní další funkce: vytvářejí podpůrnou kostru nervové tkáně, zajišťují její metabolické potřeby a zotavují se z úrazů a infekcí.

Jak funguje mozog

Zvažte jednoduchý příklad. Co se stane, když vezmeme tužku na stůl? Světlo odražené z tužky se zaostřuje do oka čočkou a směřuje k sítnici, kde se objeví obraz tužky; to je vnímáno odpovídajícími buňkami, ze kterých signál přichází k hlavním smyslově vysílajícím jadám mozku, umístěným v thalamu (vizuálním tuberkulu), hlavně v té části, která se nazývá laterální genikulární tělo. Byly aktivovány četné neurony, které reagují na rozložení světla a tmy. Axony neuronů laterálního zalomeného těla jdou na primární vizuální kůru umístěnou v okcipitálním laloku velkých hemisfér. Impulsy, které přicházejí z talamu do této části kůry, se přeměňují na složitou sekvenci výtoků kortikálních neuronů, z nichž některé reagují na hranici mezi tužkou a stolem, jiné k rohům v obraze tužky atd. Z primární vizuální kůry vstupují informace o axonech do asociativní vizuální kůry, kde probíhá rozpoznávání vzorků, v tomto případě tužka. Rozpoznání v této části kůry je založeno na dříve nahromaděných poznatcích o vnějších obrysech objektů.

Plánování pohybu (tzn. Užívání tužky) se pravděpodobně vyskytuje v kůře čelních laloků mozkových hemisfér. Ve stejné oblasti kůry jsou umístěny motorické neurony, které poskytují příkazy svalům ruky a prstů. Přístup ruky k tuži je řízen vizuálním systémem a interoreceptory, které vnímají polohu svalů a kloubů, informace, ze kterých vstupuje do centrální nervové soustavy. Když si vezmeme tužku v ruce, receptory na špičkách prstů, které vnímají tlak, nám říkají, zda prsty drží tužku dobře a jaká by měla být snaha udržet ji. Pokud chceme napsat své jméno v tužce, musíme aktivovat další informace uložené v mozku, které poskytují tento složitější pohyb, a vizuální kontrola pomůže zvýšit jeho přesnost.

Ve výše uvedeném příkladu lze vidět, že provádění poměrně jednoduché činnosti zahrnuje rozsáhlé oblasti mozku, které se táhnou od kůry k subkortikálním oblastem. Při složitějším chování spojeném s řečem nebo myšlením se aktivují jiné neurální okruhy, které pokrývají ještě rozsáhlejší oblasti mozku.

HLAVNÍ ČÁSTI BRAIN

Mozak může být rozdělen do tří hlavních částí: předního mozku, mozku a cerebellum. V předním mozku se vylučují mozkové hemisféry, thalamus, hypotalamus a hypofýza (jedna z nejdůležitějších neuroendokrinních žláz). Soustava je tvořena medulou oblongata, pons (pons) a středním mozkem.

Velké hemisféry

- největší část mozku, složka u dospělých asi 70% její hmotnosti. Obvykle jsou hemisféry symetrické. Jsou propojeny masivním svazkem axonů (corpus callosum), které poskytují výměnu informací.

Každá hemisféra se skládá ze čtyř laloků: čelní, parietální, temporální a okcipitální. Kůra čelních lalůček obsahuje centra, která regulují pohybovou aktivitu, stejně jako pravděpodobně centra plánování a předvídání. V kůře parietálních laloků, které se nacházejí za čelní částí, existují zóny tělesných pocitů, včetně pocitu dotyku a kloubu a svalového pocitu. Bok po boku parietálního laloku sousedí s temporální, ve které se nachází primární sluchová kůra, stejně jako středy řeči a další vyšší funkce. Zadní část mozku zaujímá okcipitální lalok umístěný nad mozkovým mozkem; jeho kůra obsahuje zóny vizuálních pocitů.

Oblasti kůry, které nejsou přímo spojeny s regulací pohybů nebo analýzou senzorických informací, jsou označovány jako asociativní kůra. V těchto specializovaných zónách se vytvářejí asociativní vazby mezi různými oblastmi a částmi mozku a informace pocházející z nich jsou integrovány. Asociativní kortex poskytuje tak složité funkce jako učení, paměť, řeč a myšlení.

Subkortické struktury.

Pod kůrou leží řada důležitých struktur mozku nebo jádra, které jsou seskupení neuronů. Patří mezi ně thalamus, bazální ganglia a hypotalamus. Thalamus je hlavní jádro vysílajícího senzory; obdrží informace od smyslů a následně ji předává příslušným částem senzorického mozku. Existují také nespecifické zóny, které jsou spojeny s téměř celou kůrou a pravděpodobně poskytují procesy její aktivace a udržování bdělosti a pozornosti. Bazální ganglia jsou sada jader (takzvaná skořápka, bledá kulička a kádové jádro), které se podílejí na regulaci koordinovaných pohybů (spuštění a zastavení).

Hypotalamus je malá oblast v základu mozku, která leží pod thalamusem. Bohatá v krvi je hypotalamus důležitým centrem, který řídí homeostatické funkce těla. Produkuje látky, které regulují syntézu a uvolňování hormonů hypofýzy (viz také HYPofýza). V hypotalamu je mnoho jader, které plní specifické funkce, jako je regulace metabolismu vody, distribuce uloženého tuku, tělesná teplota, sexuální chování, spánek a bdění.

Brain stonku

umístěné v základu lebky. Spojuje míchu s předním mozkem a skládá se z medulky oblongata, pons, middle a diencephalon.

Prostřednictvím středního a mezilehlého mozku i celého kmene projdou motorovými cestami vedoucími k míchu, stejně jako některými citlivými cestami od míchy až po nadcházející části mozku. Pod středním mozkem je most spojený nervovými vlákny s mozkem. Nejspodnější část kmene - medulla - přímo přechází do míchy. V medulla oblongata se nacházejí centra, která regulují činnost srdce a dýchání v závislosti na vnějším okolnostech a také kontrolují krevní tlak, motilitu žaludku a střev.

Na úrovni kmene se protínají cesty, které spojují každou mozkovou hemisféru s mozkovým mozkem. Proto každá hemisféra ovládá opačnou stranu těla a je spojena s opačnou polokoulou mozečku.

Cerebellum

umístěné pod okcipitálními laloky mozkových hemisfér. Cestami mostu je spojena s přilehlými částmi mozku. Cerebellum reguluje jemné automatické pohyby, koordinuje činnost různých svalových skupin při provádění stereotypních behaviorálních akcí; také neustále řídí polohu hlavy, trupu a končetin, tj. zapojených do udržování rovnováhy. Podle nejnovějších údajů hraje malý mozek velmi důležitou roli ve vytváření motorických dovedností, což pomáhá zapamatovat si sled pohybu.

Jiné systémy.

Limbický systém je široká síť vzájemně propojených oblastí mozku, které regulují emocionální stavy a zároveň poskytují učení a paměť. Jádra tvořící limbický systém zahrnují amygdaly a hipokampus (zahrnuté ve temporálním laloku), stejně jako hypotalamus a tzv. Jádro. průhledné septa (umístěné v subkortikálních oblastech mozku).

Retikulární formace je síť neuronů táhnoucích se přes celý kmen k thalamu a dále spojená s rozsáhlými oblastmi kůry. Podílí se na regulaci spánku a bdění, udržuje aktivní stav kůry a přispívá k zaměření pozornosti na určité objekty.

MĚŘÍCÍ ELEKTRICKÁ ČINNOST

Pomocí elektrod umístěných na povrchu hlavy nebo zavedených do mozkové hmoty je možné fixovat elektrickou aktivitu mozku kvůli výboji jejích buněk. Nahrávání elektrické aktivity mozku elektrodami na povrchu hlavy se nazývá elektroencefalogram (EEG). Neumožňuje zaznamenávat vypouštění jednotlivých neuronů. Pouze v důsledku synchronizované aktivity tisíců nebo milionů neuronů se na zaznamenané křivce objevují znatelné kmity (vlny).

Při neustálé registraci na EEG se objevují cyklické změny, které odrážejí celkovou úroveň aktivity jednotlivce. Ve stavu aktivní bdění EEG zachycuje nízkoprotéžné ne-rytmické beta vlny. Ve stavu uvolněné bdění se zavřenýma očima převažují alfa vlny s frekvencí 7-12 cyklů za sekundu. Výskyt spánku je indikován výskytem pomalých vln s vysokou amplitudou (delta vlny). Během období snění se na EEG znovu objeví beta vlny a na základě EEG může být vytvořen falešný dojem, že osoba je vzhůru (tedy termín "paradoxní spánek"). Sny jsou často doprovázeny rychlými pohyby očí (s uzavřenými víčky). Proto se snění nazývá také spánkem s rychlými pohyby očí (viz také SLEEP). EEG umožňuje diagnostikovat některé nemoci mozku, zejména epilepsii (viz EPILEPSY).

Pokud zaznamenáte elektrickou aktivitu mozku během akce určitého podnětu (vizuální, sluchové nebo hmatové), můžete identifikovat tzv. evokované potenciály - synchronní výboje určité skupiny neuronů, které vznikají v reakci na konkrétní vnější stimul. Studium evokovaných potenciálů umožnilo objasnit lokalizaci mozkových funkcí, zejména spojit funkci řeči s určitými oblastmi temporálních a čelních laloků. Tato studie rovněž pomáhá posoudit stav senzorických systémů u pacientů se sníženou citlivostí.

BRAIN NEUROCHEMIE

Mezi nejdůležitější neurotransmitery mozku patří acetylcholin, norepinefrin, serotonin, dopamin, glutamát, kyselina gama-aminomáselná (GABA), endorfiny a enkefaliny. Vedle těchto dobře známých látek je v mozku pravděpodobně fungovat i řada dalších, které ještě nebyly studovány. Některé neurotransmitery působí pouze v určitých oblastech mozku. Takže endorfiny a enkefaliny se nacházejí pouze v cestách vedoucích bolestivé impulzy. Další mediátory, jako je glutamát nebo GABA, jsou rozšířenější.

Účinek neurotransmiterů.

Jak již bylo uvedeno, neurotransmitery, působící na postsynaptickou membránu, mění svou vodivost pro ionty. Často se to děje aktivací v postsynaptickém neuronu druhého "mediátorového" systému, například cyklického adenosinmonofosfátu (cAMP). Účinky neurotransmiterů lze modifikovat pod vlivem jiné třídy neurochemických látek - peptidových neuromodulátorů. Uvedené presynaptickou membránou současně s mediátorem mají schopnost zvýšit nebo jinak měnit účinek mediátorů na postsynaptickou membránu.

Nedávno objevený endorfin-enkefalinový systém je důležitý. Enkefaliny a endorfiny jsou malé peptidy, které inhibují vedení bolestivých impulsů vazbou na receptory v CNS, včetně vyšších zón kůry. Tato rodina neurotransmiterů potlačuje subjektivní vnímání bolesti.

Psychoaktivní drogy

- látky, které se mohou specificky vázat na určité receptory v mozku a způsobit změny v chování. Byly identifikovány několik mechanismů jejich působení. Některé ovlivňují syntézu neurotransmiterů, jiné - na jejich akumulaci a uvolňování ze synaptických vezikulů (například amfetamin způsobuje rychlé uvolnění norepinefrinu). Třetí mechanismus se váže na receptory a napodobuje působení přirozeného neurotransmiteru, například účinek LSD (diethylamid kyseliny lysergové) je vysvětlen jeho schopností vázat se na serotoninové receptory. Čtvrtým typem léčebného účinku je blokáda receptoru, tj. antagonismu neurotransmitery. Takovéto široce používané antipsychotika jako jsou fenotiaziny (například chlorpromazin nebo aminazin) blokují dopaminové receptory a tím snižují účinek dopaminu na postsynaptické neurony. Nakonec je posledním společným mechanismem účinku inhibice inaktivace neurotransmiteru (mnoho pesticidů zabraňuje inaktivaci acetylcholinu).

Dlouho je známo, že morfin (vyčištěný makový výrobek ópia) má nejen výrazný analgetický (analgetický) účinek, ale také schopnost vyvolat euforii. Proto se používá jako lék. Účinek morfinu je spojen s jeho schopností vázat se na receptory na lidském endorfinu-enkefalinovém systému (viz také DRUG). To je jen jeden z mnoha příkladů skutečnosti, že chemická látka jiného biologického původu (v tomto případě rostlinného původu) je schopna ovlivňovat fungování mozku zvířat a lidí a interagovat se specifickými neurotransmiterními systémy. Dalším známým příkladem je curare, odvozený z tropické rostliny a schopný blokovat receptory acetylcholinu. Indiáni z Jižní Ameriky namazali krérové ​​šípy, používající paralyzační efekt spojený s blokádou neuromuskulárního přenosu.

BRAIN STUDIES

Výzkum mozku je obtížný ze dvou hlavních důvodů. Za prvé, mozek, bezpečně chráněný lebkou, nemůže být zpřístupněn přímo. Za druhé, neurony mozku se neregenerují, takže jakýkoli zásah může vést k nezvratným škodám.

Navzdory těmto potížím je od pradávna známo výzkum mozku a některé formy jeho léčby (primárně neurochirurgická intervence). Archeologické nálezy ukazují, že již ve starověku člověk popraskal lebku, aby získal přístup k mozku. Zvláště intenzivní výzkum mozku byl prováděn během období války, kdy bylo možné pozorovat různé poranění hlavy.

Poškození mozku v důsledku zranění v přední části nebo zranění utrpěné v době míru je druh experimentu, při kterém jsou některé části mozku zničeny. Jelikož je to jediná možná forma "experimentu" na lidském mozku, další důležitou metodou výzkumu byly pokusy na laboratorních zvířatech. Při pozorování behaviorálních nebo fyziologických důsledků poškození určité struktury mozku lze posoudit jeho funkci.

Elektrická aktivita mozku u experimentálních zvířat je zaznamenávána pomocí elektrod umístěných na povrchu hlavy nebo mozku nebo zavedených do látky mozku. Je tak možné určit aktivitu malých skupin neuronů nebo jednotlivých neuronů, stejně jako identifikovat změny iontových toků přes membránu. Pomocí stereotaktického zařízení, které umožňuje zadání elektrody do určitého místa v mozku, jsou zkoumány jeho nepřístupné hloubkové části.

Dalším přístupem je odstranění malých oblastí živé mozkové tkáně, po které se její existence udržuje jako řez umístěný v živném médiu nebo buňky jsou odděleny a studovány v buněčných kulturách. V prvním případě můžete prozkoumat interakci neuronů, ve druhé - aktivitu jednotlivých buněk.

Když se zkoumá elektrická aktivita jednotlivých neuronů nebo jejich skupin v různých oblastech mozku, počáteční aktivita je nejprve zaznamenána, pak je určen účinek určitého účinku na funkci buněk. Podle jiného způsobu se prostřednictvím implantované elektrody aplikuje elektrický impuls, aby se uměle aktivovaly nejbližší neurony. Takže můžete studovat účinky některých oblastí mozku na jeho dalších oblastech. Tento způsob elektrické stimulace byl užitečný při studiu systémů kmenových aktivačních systémů procházejících středním mozkem; to se také uchýlí k pokusům pochopit, jak procesy učení a paměti probíhají na synaptické úrovni.

Před sto lety bylo jasné, že funkce levé a pravé hemisféry jsou různé. Francouzský chirurg P. Brock, pozorující pacienty s cerebrovaskulární nehodou (mozková mrtvice), zjistil, že pouze pacienti s poškozením levé hemisféry trpěli poruchou řeči. Další studie o specializaci hemisférů pokračovaly za použití dalších metod, například záznamu EEG a evokovaných potenciálů.

V posledních letech se používají složité technologie k získání obrazů (vizualizací) mozku. Počítačová tomografie (CT) tak revolučně proměnila klinickou neurologii, což umožnilo získat detailní (vrstvený) obraz mozkových struktur in vivo. Další zobrazovací metoda - pozitronová emisní tomografie (PET) - poskytuje obraz metabolické aktivity mozku. V tomto případě je krátkotrvající radioizotop zaveden do člověka, který se hromadí v různých částech mozku, a tím více, tím vyšší je jeho metabolická aktivita. S pomocí PET bylo také prokázáno, že řečové funkce většiny vyšetřovaných je spojeno s levou hemisférou. Vzhledem k tomu, že mozog pracuje s použitím obrovského množství paralelních struktur, PET poskytuje takové informace o funkcích mozku, které nelze získat s jednotlivými elektrodami.

Výzkum mozku se zpravidla provádí pomocí kombinace metod. Například americký neurobiolog R. Sperri se zaměstnanci použil jako léčebný postup k řezání corpus callosum (svazek axonů spojujících obě hemisféry) u některých pacientů s epilepsií. Následně u těchto pacientů s "rozštěpeným" mozkem byla vyšetřována hemisferická specializace. Bylo zjištěno, že pro řečové a jiné logické a analytické funkce je zodpovědná dominantní (obvykle levá) hemisféra, zatímco nerovnováha hemisféry analyzuje prostorově-časové parametry vnějšího prostředí. Takže se aktivuje, když posloucháme hudbu. Mozaikový obraz mozkové aktivity naznačuje, že v kůře a subkortikálních strukturách existuje řada specializovaných oblastí; současná aktivita těchto oblastí potvrzuje koncept mozku jako výpočetního zařízení s paralelním zpracováním dat.

S nástupem nových výzkumných metod se pravděpodobně změní představy o mozkových funkcích. Použití zařízení, které nám umožňují získat "mapu" metabolické aktivity různých částí mozku, stejně jako použití molekulárně genetických přístupů, by mělo prohloubit naše znalosti procesů, které se vyskytují v mozku. Viz též neuropsychologie.

Srovnávací anatomie

V různých typech obratlovců je mozek pozoruhodně podobný. Pokud provádíme srovnání na úrovni neuronů, najdeme výraznou podobnost takových charakteristik, jako jsou použité neurotransmitery, fluktuace koncentrací iontů, typy buněk a fyziologické funkce. Základní rozdíly se objevují pouze v porovnání s bezobratlými. Neurony bezobratlých jsou mnohem větší; často jsou vzájemně propojeny nikoli chemickými, ale elektrickými synapsy, které se zřídka nacházejí v lidském mozku. V nervovém systému bezobratlých jsou detekovány některé neurotransmitery, které nejsou charakteristické pro obratlovce.

U obratlovců se rozdíly ve struktuře mozku vztahují hlavně na poměr jednotlivých struktur. Při hodnocení podobností a rozdílů v mozku ryb, obojživelníků, plazů, ptáků, savců (včetně lidí) lze odvodit několik obecných vzorců. Za prvé, všechna tato zvířata mají stejnou strukturu a funkce neuronů. Za druhé, struktura a funkce míchy a mozku jsou velmi podobné. Za třetí, vývoj savců je doprovázen výrazným zvýšením kortikálních struktur, které dosahují maximálního vývoje u primátů. U obojživelníků tvoří kůra jen malou část mozku, zatímco u lidí je to dominantní struktura. Domníváme se však, že principy fungování mozku všech obratlovců jsou téměř stejné. Rozdíly jsou určeny počtem interneuronových vazeb a interakcí, což je vyšší, tím složitější je mozek. Viz také ANATOMIE COMPARATIVE.

Struktura a vývoj lidského mozku a jak se mužský mozek liší od ženského?

Snad jedním z nejdůležitějších orgánů lidského těla je mozek. Díky svým vlastnostem je schopen regulovat všechny funkce živého organismu. Doktoři ještě tento organismus neskončili a dokonce dnes předkládají různé hypotézy o svých skrytých schopnostech.

Co tvoří lidský mozek?

Složení mozku má více než stovku miliard buněk. Je pokryta třemi ochrannými kryty. A díky objemu mozku zaujímá asi 95% celé lebky. Hmotnost se pohybuje od jednoho do dvou kilogramů. Ale je zajímavé, že schopnost tohoto těla nezávisí na jeho závažnosti. Ženský mozek je asi o 100 gramů menší než samec.

Voda a tuk

60% celkového složení lidského mozku tvoří tukové buňky a pouze 40% obsahuje vodu. Je považován za nejhrubší orgán těla. Aby se funkční vývoj mozku uskutečnil správně, musí být člověk řádně a účinně krmen.

Zeptejte se lékaře na vaši situaci

Struktura mozku

Abychom poznali a prozkoumali všechny funkce lidského mozku, je nezbytné studovat jeho strukturu co nejdůkladněji.

Celý mozek je obvykle rozdělen do pěti různých částí:

  • Konečný mozog;
  • Meziproduktový mozog;
  • Zadní mozkový (zahrnuje mozkový a můstek);
  • Midbrain;
  • Podlouhlý mozek.

A teď se podívejme blíže na to, co je každé oddělení.

Další informace naleznete v našem podobném článku o mozku.

Konečný, střední, střední a zadní mozok

Konečný mozek je hlavní částí celého mozku, který tvoří asi 80% celkové hmotnosti a objemu.

Zahrnuje pravou a levou hemisféru, která se skládá z desítek různých drážk a konvolucí:

  1. Levá hemisféra je zodpovědná za řeč. Právě zde probíhá analýza životního prostředí, uvažuje se o činnostech, provádí se určité generalizace a rozhoduje se. Levá hemisféra vnímá matematické operace, jazyky, psaní, analýzy
  2. Pravá hemisféra, podle pořadí, je zodpovědná za vizuální paměť, například paměť obličeje nebo některé obrázky. Vpravo se vyznačuje vnímáním barvy, hudebních poznámek, snů a podobně.

Na druhé straně každá hemisféra zahrnuje:

Mezi hemisférami je deprese, která je naplněna corpus callosum. Stojí za zmínku, že procesy, za něž jsou hemisféry zodpovědné, se navzájem liší.

Prozatímní mozog je charakterizován přítomností několika částí:

  • Dole. Spodní část je zodpovědná za metabolismus a energii. Právě zde existují buňky, které jsou zodpovědné za signály hladovění, žízeň, udušení a tak dále. Spodní část je zodpovědná za zajištění toho, že jsou potřeba všechny lidské potřeby, a ve vnitřním prostředí se udržuje stálost.
  • Centrální. Všechny informace, které naše smysly dostávají, jsou přenášeny do centrální části diencefalonu. Toto je místo počátečního hodnocení jejího významu. Přítomnost tohoto oddělení umožňuje odhalit zbytečné informace a pouze důležitá část je přenesena do mozkové kůry.
  • Horní část.

Přechodný mozek je přímo zapojen do všech motorických procesů. To zahrnuje běh, chůzi a squatting, stejně jako různé polohy těla v intervalech mezi pohyby.

Středový mozek je součástí celého mozku, v němž jsou soustředěny neurony odpovědné za sluch a zrak. Přečtěte si více o tom, která část mozku je zodpovědná za vizi. Mohou určit velikost žáka a zakřivení čočky a jsou také zodpovědné za svalovou tónu. Tato část mozku se také podílí na všech motorických procesech v těle. Díky němu může člověk provádět ostré otáčecí pohyby.

Zadní mozok má také složitou strukturu a zahrnuje dvě části:

Most se skládá z hřbetních a centrálních vlákenných povrchů:

  • Zadní mozeček. Ve vzhledu se můstek podobá spíše silnému válci. Vlákna v něm jsou uspořádána napříč.
  • Ve střední části mostu je hlavní tepna celého lidského mozku. Nukleoly této části mozku jsou množství skupin šedé hmoty. Zadní mozog provádí funkci vodičů.

Druhé jméno cerebellum je malý mozek:

  • To se nachází v zadní fossa lebky a zaujímá celou jeho dutinu.
  • Hmotnost cerebellum nepřesahuje 150 gramů.
  • Ze dvou hemispér je oddělena štěrbinou a pokud se podíváte ze strany, máte dojem, že visí nad mozkovým mozkem.
  • V cerebellum je přítomna bílá a šedá hmota.

Kromě toho, pokud budeme uvažovat o struktuře, je zřejmé, že šedá hmota pokrývá bílou barvu a tvoří nad ní vrstvu, která se běžně nazývá kůra. Složení šedé hmoty je molekulární a zrnitá vrstva, stejně jako neurony, které mají tvar hrušky.

Bílá hmota přímo vyčnívá z mozku, mezi kterými se šedá hmota rozprostírá jako tenké větve stromu. Je to samotný malý mozek, který řídí koordinaci pohybů pohybového aparátu.

Medulla oblongata je přechodový segment míchy v mozku. Po provedení podrobné studie bylo prokázáno, že mícha a mozog mají ve své struktuře mnoho společných bodů. Mícha kontroluje dýchání a krevní oběh a také ovlivňuje metabolismus.

Kůra obsahuje více než 15 miliard neuronů, z nichž každý má jiný tvar. Tyto neurony se shromažďují v malých skupinách, které zase tvoří několik vrstev kůry.

Celková kůra sestává ze šesti vrstev, které se hladce transformují do sebe a mají řadu různých funkcí.

Podívejme se na každou z nich rychle, od nejhlubších a blížících se k vnějšímu:

  1. Nejhlubší vrstva má název vřeteno. Ve svém složení vylučují fusiformní buňky, které se postupně šíří v bílé hmotě.
  2. Další vrstva je pojmenována jako druhá pyramidová. Tato vrstva je pojmenována kvůli neuronům, ve formě připomínající pyramidy různých velikostí.
  3. Druhá zrnitá vrstva. Má také neformální jméno jako interní.
  4. Pyramid. Jeho struktura je podobná druhé pyramidové.
  5. Zrnko. Protože druhý granulát volá interní, je to externí.
  6. Molekulární. V této vrstvě nejsou prakticky žádné buňky a ve struktuře převažují vláknité struktury, které se protínají jako vlákna.

Kromě šesti vrstev je kůra rozdělena na tři zóny, z nichž každá plní své funkce:

  1. Primární zóna sestávající ze specializovaných nervových buněk přijímá impulsy z orgánů sluchu a zraku. Pokud se tato část kůry poškodí, mohou vést k nevratným změnám senzorických a motorických funkcí.
  2. V sekundární zóně jsou zpracované a analyzované přijaté informace. Pokud dojde k poškození v této části, bude to vést k porušení vnímání.
  3. Excilace terciární zóny je vyvolána receptory kůže a sluchu. Tato část umožňuje člověku dozvědět se o světě.

Genderové rozdíly

Zdá se, že je to stejný orgán u mužů a žen. A zdá se, jaké to mohou být rozdíly. Ale díky zázračnému techniku, konkrétně tomografickému skenování, bylo zjištěno, že mezi mužským a ženským mozkem existuje řada rozdílů.

Navíc, pokud jde o hmotnostní kategorie, mozek žen je asi o 100 gramů nižší než u mužů. Podle statistik odborníků je nejvýznamnější sexuální rozdíl pozorován ve věku od třinácti do sedmnácti let. Starší lidé se stávají méně rozdíly.

Vývoj mozku

Vývoj lidského mozku začíná v období jeho intrauterinní formace:

  • Vývojový proces začíná tvorbou neurální trubice, která se vyznačuje nárůstem velikosti v oblasti hlavy. Toto období se nazývá perinatální. Tentokrát je charakterizován jeho fyziologickým vývojem a vytvářejí také senzorické a efektorové systémy.
  • V prvních dvou měsících nitroděložního vývoje vznikly tři ohyby: středový most, můstek a krček. Navíc první dvě jsou charakterizovány souběžným vývojem v jednom směru, zatímco třetí začíná pozdější formací v úplně opačném směru.

Po stárnutí se jeho mozek skládá ze dvou hemisfér a spousty konvolucí.

Dítě roste a mozek prochází mnoha změnami:

  • Chrápky a konvoluce jsou mnohem větší, prohlubují se a mění se jejich tvar.
  • Nejrozvinutější oblast po narození se považuje za oblast v chrámech, ale také se dá rozvíjet na úrovni buněk. Pokud se porovnává polokoule a zadní část hlavy, nelze pochybovat o tom, že zadní část hlavy je mnohem menší než hemisféra. Ale navzdory této skutečnosti jsou v něm naprosto všechny gyrus a brady.
  • Ne dříve než ve věku 5 let, vývoj čelní části mozku dosáhne úrovně, kde tato část může pokrýt ostrůvek mozku. Pro tuto chvíli by měl dojít k úplnému rozvoji řečových a motorických funkcí.
  • Ve věku 2-5 let dospívají sekundární pole mozku. Poskytují procesy vnímání a ovlivňují provádění pořadí akcí.
  • Terciární pole se tvoří v období od 5 do 7 let. Zpočátku se vyvíjí parieto-temporální-occipitální část a pak oblast prefrontální. V tuto chvíli se vytvářejí pole, která jsou zodpovědná za nejkomplexnější úrovně zpracování informací.

Jak lidský mozek: oddělení, struktura, funkce

Centrální nervový systém je součástí těla zodpovědného za naše vnímání vnějšího světa i nás. Reguluje práci celého těla a ve skutečnosti je fyzickým substrátem toho, co říkáme já. Hlavním orgánem tohoto systému je mozek. Podívejme se, jak jsou řezy mozku uspořádány.

Funkce a struktura lidského mozku

Tento orgán se skládá převážně z buněk nazývaných neurony. Tyto nervové buňky vytvářejí elektrické impulsy, které způsobují, že nervový systém pracuje.

Práce neuronů jsou zajištěny buňkami nazývanými neuroglia - tvoří téměř polovinu celkového počtu buněk CNS.

Neurony se zase skládají z těla a procesů dvou typů: axonů (vysílajících impulsů) a dendritů (impuls). Těla nervových buněk tvoří tkáňovou hmotu, která se nazývá šedá hmota a její axony jsou tkané do nervových vláken a jsou bílou hmotou.

  1. Pevný. Jedná se o tenký film, jedna strana přiléhající k kostní tkáni lebky a druhá přímo k kortexu.
  2. Soft Skládá se z volné tkaniny a těsně obepíná povrch polokoulí, jdoucí do všech trhlin a drážkování. Jeho funkcí je přívod krve do orgánu.
  3. Spider Web. Umístil mezi první a druhou skořápkou a prováděl výměnu mozkomíšního moku (cerebrospinální tekutina). Liquor je přirozený tlumič nárazů, který chrání mozek před poškozením během pohybu.

Dále se podíváme blíže na to, jak funguje lidský mozek. Morfo-funkční charakteristiky mozku jsou také rozděleny do tří částí. Spodní část se nazývá diamant. Tam, kde začne kosočtvercová část, končí mícha - prochází do meduly a zadní (pony a cerebellum).

Následuje středový mozok, který spojuje spodní části s hlavním nervovým centrem - přední částí. Posledně jmenovaný zahrnuje terminál (cerebrální hemisféry) a diencephalon. Klíčovými funkcemi mozkových hemisfér jsou organizace vyšší a nižší nervové aktivity.

Konečný mozek

Tato část má největší objem (80%) ve srovnání s ostatními. Skládá se ze dvou velkých polokoulí, spojujícího tělo callosum, stejně jako olfactory centra.

Mozkové hemisféry, levé a pravé, jsou zodpovědné za formování všech myšlenkových procesů. Zde je největší koncentrace neuronů a jsou pozorovány nejkomplexnější vazby mezi nimi. V hloubce podélné drážky, která dělí hemisféru, je hustá koncentrace bílé hmoty - corpus callosum. Skládá se ze složitých plexů nervových vláken, které protínají různé části nervového systému.

Uvnitř bílé hmoty jsou skupiny neuronů, které se nazývají bazální ganglií. Blízkost k "transportnímu uzlu" mozku umožňuje těmto formacím regulovat svalový tonus a provádět okamžité odpovědi na reflexní motor. Kromě toho jsou bazální ganglií zodpovědné za vytvoření a provoz složitých automatických akcí, které částečně opakují funkce cerebellum.

Mozková kůra

Tato malá povrchová vrstva šedé hmoty (až 4,5 mm) je nejmladší formace v centrální nervové soustavě. Je to mozková kůra zodpovědná za práci vyšší nervové aktivity člověka.

Studie umožnily zjistit, které oblasti kůry byly během evolučního vývoje relativně nedávno vytvořeny a které byly ještě přítomny v našich prehistorických předcích:

  • neokortex je novou vnější částí kůry, která je její hlavní částí;
  • archicortex - starší entita odpovědná za instinktivní chování a lidské emoce;
  • Paleocortex je nejstarší oblastí zabývající se regulací vegetativních funkcí. Navíc pomáhá udržovat vnitřní fyziologickou rovnováhu těla.

Čelní lalůčky

Největší laloky velkých hemisfér zodpovídají za komplexní motorické funkce. Dobrovolné pohyby jsou plánovány v čelních lalůčkách mozku a zde se nacházejí také řečová centra. Právě v této části kůry dochází k voličské kontrole chování. V případě poškození čelních lalůk člověk ztratí moc nad jeho činy, chová se protisociální a jednoduše neadekvátní.

Occipitální laloky

Jsou úzce příbuzní vizuální funkci, jsou zodpovědní za zpracování a vnímání optických informací. To znamená, že přeměňují celou sadu těch světelných signálů, které vstupují do sítnice do smysluplných vizuálních obrazů.

Parietální lalůčky

Vykonávají prostorovou analýzu a zpracovávají většinu pocitů (dotyk, bolest, "pocit svalu"). Navíc přispívá k analýze a integraci různých informací do strukturovaných fragmentů - schopnosti poznávat vlastní tělo a jeho strany, schopnost číst, číst a psát.

Časové lalůčky

V této části probíhá analýza a zpracování zvukových informací, které zajišťují funkci sluchu a vnímání zvuků. Časové laloky se podílejí na rozpoznávání tváří různých lidí, stejně jako výrazů a emocí obličeje. Zde jsou informace strukturovány pro trvalé ukládání dat a je tak implementována dlouhodobá paměť.

Kromě toho časové laloky obsahují řečová centra, jejichž poškození vede k neschopnosti vnímat ústní řeč.

Islet share

Je považován za zodpovědný za formování vědomí u člověka. Ve chvílích empatie, empatie, poslechu hudby a zvuků smíchu a plače je aktivní práce insulárního laloku. Také léčí pocity odporu vůči nečistotám a nepříjemným zápachům, včetně fiktivních podnětů.

Středně pokročilý mozek

Mezivládní mozog slouží jako druh filtru pro neurální signály - přijímá všechny příchozí informace a rozhoduje, kam má jít. Skládá se z dolní a zadní strany (thalamus a epithalamus). Endokrinní funkce je také realizována v této části, tj. hormonální metabolismus.

Spodní část se skládá z hypothalamu. Tento malý hustý svazek neuronů má obrovský dopad na celé tělo. Kromě regulace teploty těla řídí hypotalamus cykly spánku a bdění. Také uvolňuje hormony, které jsou odpovědné za hlad a žízeň. Být centrem potěšení, hypotalamus reguluje sexuální chování.

Je také přímo spojena s hypofýzou a přenáší nervovou aktivitu na endokrinní aktivitu. Funkce hypofýzy, zase, spočívá v regulaci práce všech žláz v těle. Elektrické signály přecházejí z hypotalamu do hypofýzy mozku, "objednávají", jejichž výroba by měla začít s hormony a která by měla být zastavena.

Diencephalon také zahrnuje:

  • Thalamus - tato část vykonává funkce "filtru". Zde jsou signály z vizuálních, sluchových, chuťových a hmatových receptorů zpracovávány a distribuovány příslušným oddělením.
  • Epithalamus - produkuje hormon melatonin, který reguluje bdělost, účastní se procesu puberty a řídí emoce.

Midbrain

Upravuje především sluchovou a vizuální reflexní činnost (zúžení žáka v jasném světle, otáčení hlavy zdrojem hlasitého zvuku apod.). Po zpracování v talamu se informace dostávají do středního mozku.

Zde se dále zpracovává a začíná proces vnímání, vytváření smysluplného zvuku a optického obrazu. V této části je pohyb oka synchronizován a je zajištěno binokulární vidění.

Středník obsahuje nohy a quadlochromii (dvě sluchové a dvě vizuální kopce). Uvnitř je dutina středního mozku, která spojuje komory.

Medulla oblongata

Jedná se o dávnou formu nervového systému. Funkce medulla oblongata jsou dýchání a srdce. Pokud tuto oblast poškodíte, člověk zemře - kyslík přestane proudit do krve, kterou srdce již nečerpá. V neuronech tohoto oddělení začínají takové ochranné reflexy jako kýchání, mrkání, kašel a zvracení.

Struktura medulla oblongata připomíná podlouhlou žárovku. Uvnitř obsahuje jádro šedé hmoty: retikulární formace, jádro několika lebečních nervů a neurální uzliny. Pyramida medulla oblongata, sestávající z pyramidálních nervových buněk, provádí vodivou funkci, která kombinuje mozkovou kůru a dorzální oblast.

Nejdůležitějšími středisky medulla oblongata jsou:

  • regulace dýchání
  • regulace krevního oběhu
  • regulace řady funkcí trávicího systému

Zadní mozkový: můstek a cerebellum

Struktura zadního mozku zahrnuje pony a cerebellum. Funkce mostu je velmi podobná jeho názvu, jelikož sestává hlavně z nervových vláken. Mozkový můstek je v podstatě "dálnicí", přes kterou přenášejí signály z těla do mozku a impulsy, které přicházejí z nervového centra do těla. Vzestupným způsobem můstek mozku prochází do středního mozku.

Cerebellum má mnohem širší škálu možností. Funkce mozečku jsou koordinace pohybů těla a udržování rovnováhy. Navíc cerebellum reguluje nejen složité pohyby, ale také přispívá k přizpůsobení muskuloskeletálního systému při různých poruchách.

Například experimenty s použitím invertoskopu (speciálních brýlí, které obracejí obraz okolního světa) ukazují, že to jsou funkce cerebellum, které jsou zodpovědné nejen za to, že se člověk začne orientovat ve vesmíru, ale také vidí svět správně.

Anatomicky cerebell opakuje strukturu velkých hemisfér. Venku je pokryta vrstvou šedé hmoty, pod níž je shluk bílého.

Limbický systém

Systém Limbic (od latinského slova limbus - edge) se nazývá sada formací obklopujících horní část kufru. Systém zahrnuje čichová centra, hypotalamus, hipokampus a síťovou tvorbu.

Hlavní funkce limbického systému jsou přizpůsobení organismu změnám a regulaci emocí. Tato formace přispívá k vytváření trvalých vzpomínek prostřednictvím sdružování paměti a smyslových zkušeností. Blízká souvislost mezi čichovým traktorem a emocionálními středisky vede k tomu, že pachy nám způsobují takové silné a jasné vzpomínky.

Pokud uvedete hlavní funkce limbického systému, odpovídá za následující procesy:

  1. Smysl pachu
  2. Komunikace
  3. Paměť: krátkodobá a dlouhodobá
  4. Pokojný spánek
  5. Účinnost oddělení a orgánů
  6. Emoce a motivační složka
  7. Duševní činnost
  8. Endokrinní a vegetativní
  9. Částečně se podílí na tvorbě jídla a sexuální instinkt

Se Vám Líbí O Epilepsii